The pipeline created for this paper is primarily designed to be run on a Unix/Linux system with a bash terminal. Although some of the binaries can be compiled or are available for Mac or Windows systems, these configurations have not been tested and so your mileage may vary.

The following software packages (and versions) are required prior to executing any of the pipeline scripts:

Perl/BioPerl, 1.6.1: http://www.bioperl.org/wiki/Installing_BioPerl
SeqClean, 2/22/2011: http://compbio.dfci.harvard.edu/tgi/software/
RepeatMasker, Open-3.3.0: http://www.repeatmasker.org/
TGICL, 1/31/2005: http://compbio.dfci.harvard.edu/tgi/software/
CAP3, 10/15/2007: http://seq.cs.iastate.edu/cap3.html
BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download
CD-HIT, 4.5.7: http://cd-hit.org
Virtual Ribosome (optional), 2006: http://www.cbs.dtu.dk/services/VirtualRibosome/

Please install the software components according to the instructions with the software package. Also be sure to include the parent folder of each executable in your .bash_profile PATH declaration, otherwise you will receive 'command not found' errors.

To create an example dataset, follow the commands below, substituting appropriate filenames and paths where necessary. These commands assume using the bash terminal shell with a standard Perl installation and using four (4) processors (threads).

Concatenate transcript files
Unique identifiers must be maintained through the whole process. Thus, if more than one Trinity transcript file is being used, transcript IDs must be changed to be unique. For example:
perl -i.bak -pe 's/^>/>trin1_/' trinity1.fa
perl -i.bak -pe 's/^>/>trin2_/' trinity2.fa

Concatenate the files and remove Trinity 'path' data from deflines (they're really long!):
cat transcripts1.fa trinity1.fa trinity2.fa > allseqs.fa
perl -i.bak -pe 's/ path=.+//g' allseqs.fa

Change all DNA bases to uppercase and run through SeqClean
This step will trim off any known vector sequences.
change_seq_case.pl -i allseqs.fa -o allseqs.uc.fa -d upper
seqclean allseqs.uc.fa -c 4 -v UniVec_Core_26-Jun-13.fa
grep -c ">" allseqs.uc.fa{,.clean} # how many seqs were cleaned/filtered

Run through RepeatMasker
This step will 'hide' any internal repetitive sequences by changing their sequence to lowercase. This will allow a better, more robust transcript assembly. Substitute the appropriate species or leave blank.
RepeatMasker -species amphibia -parallel 4 -nocut -xsmall -q allseqs.uc.fa.clean

Cluster and assemble with TGICL/CAP3
Cluster similar transcripts together, then assemble each cluster separately. These parameters require 94% identity and at least a 100 bp overlap between sequences.
tgicl allseqs.uc.fa.clean.masked -c 4 -l 100

Assemble the contigs and singletons into one file
cat asm_{1,2,3,4}/contigs > contigs.fa
cdbyank allseqs.uc.fa.clean.cidx < allseqs.uc.fa.clean.singletons > singletons.fa
cat {contigs,singletons}.fasta > tgicl_asm.fa

Randomize order, then align with BLASTX
This step assumes that you already have a BLAST database configured. Please see the NCBI's help guide at http://www.ncbi.nlm.nih.gov/books/NBK1763/ for instructions.
shuffle the sequences, esp. if splitting for batch processing
fasta_tool --shuffle_order --wrap 60 tgicl_asm.fa > tgicl_asm.shuff.fa
back up our orig file and rename new working file
mv tgicl_asm.fa tgicl_asm.fa.bak
mv tgicl_asm.shuff.fa tgicl_asm.fa
and now BLAST our data
blastx -db model_chordate_proteins -query tgicl_asm.fa -num_threads 4 -num_descriptions 3 \
 -num_alignments 3 -out tgicl_asm.fa.modelchord.blastx

Parse the BLASTX output
We pull from the BLASTX report about 20 columns of info needed for translation and frameshift processing.
parse_multiblast_file_lite.pl -i tgicl_asm.fa.modelchord.blastx

Generate the translation frame data file
The data file is used by the translation routines. An E value of 1e-5 is a good threshold.
translation_frame_from_blast_table.pl -i tgicl_asm.fa.modelchord.blastx.out \
-o tgicl_asm.tln_frame.dat -e "1e-5"

Detect frameshifts in our sequences from the BLASTX reports
The full BLASTX reports are used to detect the presence of frameshifts in our data. The generated data file is used for the correction routine.
detect_fs_by_BLASTX.pl -i tgicl_asm.fa.modelchord.blastx -o tgicl_asm.fs_detect.dat
wc -l tgicl_asm.fs_detect.dat # number of possible frame-shifts to correct

Correct potential frameshifted sequences
Sequences with frameshifts are corrected to retain the original BLAST-hinted frame. The remaining (uncorrected) sequences are appended to the corrected file.
correct_fs_from_fs_data.pl -i tgicl_asm.fa -d tgicl_asm.fs_detect.dat -o tgicl_asm.corrected.fa
wc -l tgicl_asm.corrected.fa.corrected_IDs.txt # how many were actually corrected

Run the mass spec translation routine
Translate our sequences in the hinted frame, and trim and filter as well.
ms_translate_fasta_by_frame.pl -i tgicl_asm.corrected.fa \
 -o tgicl_asm.corrected.pep -d tgicl_asm.tln_frame.dat
grep -c ">" tgicl_asm.corrected.pep # how many trimmed proteins we obtain

Run CD-HIT to collapse the data set
Finally, remove redundancies (at 100%) from our translated, trimmed, and filtered data.
cd-hit -i tgicl_asm.corrected.pep -o tgicl_asm.corrected.nr100.pep -c 1.00 -n 5 -M 2000 -d 0
grep -c ">" tgicl_asm.corrected.nr100.pep # number of non-redundant proteins
[bookmark: _GoBack]
