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Abstract 

 We use a Dynamic Bayesian Network (DBN) to 
build a compact representation of the features rele-
vant to Part-of-Speech (PoS) tagging (Word, Suf-
fix, Prefix, Capitalization, Hyphen, Numeric and 
Previous Tag). The outcome is a flexible tagger 
(LegoTag) with state-of-the-art performance (3.6% 
error on a benchmark corpus). We explore the ef-
fect of radically reducing the size of feature vo-
cabularies for Word and Suffix. We find that 
reducing the Suffix vocabulary to a linguistically 
motivated set, results in improved cross-corpora 
generalization. Furthermore, relying on function 
words alone is sufficient to achieve reasonable per-
formance, but minimizing the vocabularies for 
both Word and Suffix results in degradation. 

1 Part of Speech Tagging 

Many NLP applicationssss are faced with 
the dilemma whether to use statistically ex-
tracted or expert-selected features. There are 
good arguments in support of either view. Sta-
tistical feature selection does not require ex-
tensive use of human domain knowledge, 
while feature sets chosen by experts are more 
economical and generalize better to novel data. 

Most currently available PoS taggers per-
form with a high degree of accuracy. How-
ever, it appears that the success in performance 
can be overwhelmingly attributed to an across-
the-board lexicalization of the task. Indeed, 
Charniak et al. [1993] notes that a simple 
strategy of picking the most likely tag for each 
word in a text leads to 90% accuracy.  If so, it 

is not surprising that taggers using vocabulary 
lists, with number of entries ranging from 20k 
to 45k, perform well. Even though a unigram 
model achieves an overall accuracy of 90%, it 
relies heavily on lexical information and is 
next to useless on nonstandard texts that con-
tain lots of domain-specific terminology.  

The lexicalization of the PoS tagging task 
comes at a price. Since word lists are assem-
bled from the training corpus, they hamper 
generalization across corpora. In our experi-
ence, taggers trained on the Wall Street Jour-
nal (WSJ) perform poorly on novel text e.g. e-
mail or newsgroup messages (a.k.a. Netlingo). 
At the same time, alternative training data are 
scarce and expensive to create. 

 This paper explores an alternative to lexi-
calization. Using linguistic knowledge, we   
construct a minimalist tagger with a small but 
efficient feature set, which maintains a reason-
able performance across corpora.  

A look at the previous work on this task re-
veals that the unigram model is at the core of 
even the most sophisticated taggers. The best-
known rule-based tagger [Brill’94] works in 
two stages: it assigns the most likely tag to 
each word in the text; then, it applies trans-
formation rules of the form “Replace tag X by 
tag Y in triggering environment Z”. The trig-
gering environments span up to three sequen-
tial tokens in each direction and refer to words, 
tags or properties of words within the region. 
The Brill tagger achieves less than 3.5% error 
on the Wall Street Journal (WSJ) corpus.  
However, its performance depends on a com-



prehensive vocabulary (70k words) employed 
in the first stage.  

Statistical tagging is a classic application of 
Markov Models (MMs). Brants [2000] argues 
that second-order MMs can also achieve state-
of-the-art accuracy, provided they are supple-
mented by smoothing techniques and mecha-
nisms to handle unknown words. TnT handles 
unknown words by estimating the tag prob-
ability given the suffix of the unknown word 
and its capitalization. The reported 3.3% error 
for Trigrams 'n Tags (TnT) tagger on the WSJ 
(trained on 1 million words and tested on 
10,000) appears to be a result of overfitting. 
Indeed, this is the maximum performance ob-
tained by training TnT until only 2.9% of 
words are unknown in the test corpus. A sim-
ple examination of WSJ shows that such per-
centage of unknown words in the testing 
section (10% of WSJ corpus) requires simply 
building a unreasonably large lexicon of nearly 
all (about 44k) words seen in the training sec-
tion (90% of WSJ), thus ignoring the danger of 
overfitting. Hidden MMs (HMMs) are trained 
on a dictionary with information about the 
possible PoS of words [Jelinek’85; 
Kupiec’92]. This means HMM taggers also 
rely heavily on lexical information. 

 Obviously, PoS tags depend on a variety of 
sub-lexical features, as well as on the likeli-
hood of tag/tag and tag/word sequences. In 
general, all existing taggers have incorporated 
such information to some degree. The Condi-
tional Random Fields (CRF) model [Lafferty 
et al.’02] outperforms the HMM tagger on un-
known words by extensively relying on ortho-
graphic and morphological features. It checks 
whether the first character of a word is capital-
ized or numeric; it also registers the presence 
of a hyphen and morphologically relevant suf-
fixes (-ed, -ly, -s, -ion, -tion, -ity, -ies). The 
authors note that CRF-based taggers are poten-
tially flexible because they can be combined 
with feature-induction algorithms. However, 
training is complex (AdaBoost + Forward-
backward) and slow (1000 iterations with op-

timized initial parameter vector; fails to con-
verge with unbiased initial conditions). It is 
unclear what is the relative contribution of fea-
tures in this model.  

The Maximum Entropy (MaxEnt) [Ratna-
parkhi’96] tagger accounts for the joint distri-
bution of PoS tags and features of a sentence 
with an exponential model. Its features are 
along the lines of the CRF model: 

• Does the token contain a capital letter; 
• Does the token contain a hyphen; 
• Does the token contain a number; 
• Frequent prefixes, up to 4 letters long; 
• Frequent suffixes, up to 4 letters long; 

In addition, Ratnaparkhi uses lexical infor-
mation on frequent words in the context of five 
words. The sizes of the current word, prefix, 
and suffix lists were 6458, 3602 and 2925, re-
spectively. These are supplemented by special 
Previous Word vocabularies. Features fre-
quently observed in a training corpus are se-
lected from a candidate feature pool. The 
parameters of the model are estimated using 
the computationally intensive procedure of 
Generalized Iterative Scaling to maximize the 
conditional probability of the training set given 
the model. MaxEnt tagger has 3.4% error rate. 

Our investigation examines to what extent 
the information carried by word lists can be 
subsumed under the information supplied by 
sublexical features. In order to address these 
issues we reuse the feature set of MaxEnt in a 
new model, which we subsequently minimize 
with the help of linguistically smart vocabular-
ies.  

2 PoS Tagging Bayesian Net 

This section presents our tagger, which 
combines the features suggested in the litera-
ture to date into a Dynamic Bayesian Network 
(DBN).  We briefly introduce the essential as-
pects of DBNs here and refer the reader to a 
recent PhD thesis [Murphy’02] for an excel-
lent survey. A DBN is a Bayesian network 
unwrapped in time, such that it can represent 
dependencies between variables at adjacent 



time slices. More formally, a DBN consists of 
two models B0 and B+, where B0 defines the 
initial distribution over the variables at time 0, 
by specifying: 

• set of variables X1, …, Xn; 
• directed acyclic graph over the variables; 
• for each variable Xi , a table specifying 

the conditional probability of Xi given 
its parents in the graph Pr(XiPar{Xi}). 

The joint probability distribution over the ini-
tial state is ( ) { }( )∏= n

1 iin1 XParXPrX,...,XPr . 
The transition model B+ specifies the condi-
tional probability distribution (CPD) over the 
state at time  t  given the state at time t-1 . B+  
consists of:  

• a directed acyclic graph over the vari-
ables X1,…,Xn and their predecessors 

−−
n1 X,...,X  - roots of this graph; 

• for each Xi (but not −
iX ), a conditional 

probability table Pr(XiPar{Xi}) . 
The transition probability distribution is: 

( ) { }( )∏=−−
n

Par
1

iin1n1 XXPrX,...,XX,...,XPr . 

Between them, B0 and B+ define a probability 
distribution over the realizations of a system 
through time, which justifies calling these BNs 
“dynamic”. In our setting, the word’s index in 
a sentence corresponds to time, while realiza-
tions of a system correspond to correctly 
tagged English sentences. Probabilistic reason-
ing about such system constitutes inference.  

Standard inference algorithms for DBNs are 
similar to those for HMMs. Note that, while 
the kind of DBN we consider could be con-
verted into an equivalent HMM, that would 
render the inference intractable due to a huge 
resulting state space. In a DBN, some of the 
variables will typically be observed, while 
others will be hidden. The typical inference 
task is to determine the probability distribution 
over the states of a hidden variable over time, 
given time series data of the observed vari-
ables. This is usually accomplished using the 
forward-backward algorithm. Alternatively, 
we might obtain the most likely sequence of 

hidden variables using the Viterbi algorithm. 
These two kinds of inference yield resulting 
PoS tags.  Note that there is no need to use 
"beam search", (cf. [Brants’00]).  

Learning the parameters of a DBN from 
data is generally accomplished using the EM 
algorithm. However, in our model, learning is 
equivalent to collecting statistics over co-
occurrences of feature values and tags. This is 
implemented in GAWK scripts and takes min-
utes on the WSJ training corpus. Compare this 
to GIS or IIS (Improved Iterative Scaling) 
used by MaxEnt. In large DBNs, exact infer-
ence algorithms are intractable, and so a vari-
ety of approximate methods has been 
developed.  However, as we explain below, the 
number of hidden state variables in our model 
is small enough to allow exact algorithms to 
work. For the inference we use the standard 
algorithms, as implemented in the Bayesian 
network toolkit (BNT) [Murphy’02]. 

We base our original DBN on the feature 
set of Ratnaparkhi’s MaxEnt: the set of ob-
servable nodes in our network consists of the 
current word Wi , a set of binary variables Ci , 
Hi and Ni (for Capitalization, Hyphen and 
Number) and multi-valued variables Pi and Si 
(for Prefix and Suffix), where subscript i 
stands for position index. There are two hidden 
variables: Ti and Mi (PoS and Memory). 
Memory represents contextual information 
about the antepenultimate PoS tag. A special 
value of Memory (“Start”) indicates the begin-
ning of the sentence. The PoS values are 45 
tags of the Penn Treebank tag set [Marcus’94].  

Figure 1 represents dependencies among 
the variables. Clearly, this model makes a few 
unrealistic assumptions about variable inde-
pendence and Markov property of the se-
quence. Empirically this does not present a 
problem. For the discussion of these issues 
please see Bilmes [2003] who is using similar 
models for speech recognition. 

 Thus, probability of a complete sequence 
of  PoS tags T1 … Tn  is modeled as:  

 



Pr(T1 … Tn) = Pr(T1) × Pr(F1|T1)  
× Pr(T2|T1 , Start) × Pr(F2|T2) × Pr(M2|T1)  

( ) ( ) ( )∏ −

=
×

1n

3i ii1-i1-ii1-i1-ii   TFPrM ,TMPrM ,TTPr     

× Pr(Tn|Tn-1 , Mn-1) × Pr(Fn|Tn) , 
 
where Fi  is a set of features at index  i ∈ [1..n] 
and 
Pr(Fi|Ti) = Pr(Si|Ti) × Pr(Pi|Ti) × Pr(Wi|Ti) 
                 × Pr(Ci|Ti) × Pr(Hi|Ti) × Pr(Ni|Ti).  
 
These conditional probabilities are directly 
estimated from training corpus. We use sec-
tions 0-22 of WSJ for training and sections 23, 
24 as a final test set. The same split of the data 
was used in recent publications [Toutanova 
&Manning’02; Lafferty et al.’01] that report 
relatively high performance on out-of-
vocabulary (OoV) items. The test sections 
contain 4792 sentences out of about 55600 to-
tal sentences in WSJ corpus. The average 
length of a sentence is 23 tokens. The Brown 
corpus is another part of UPenn TreeBank 
dataset, which is of a similar size to WSJ 
(1016277 tokens) but quite different in style 
and nature. Brown corpus has substantially 
richer lexicon and was chosen by us to test the 
performance on novel text. 

3 Experiments and Results 

We begin our experiments by combining the 
original MaxEnt feature set into a DBN we 
call LegoTag to emphasize its compositional 
nature. The performance of this initial network 
is 3.6% of overall error (see Table 1) and 
closely matches that of MaxEnt (3.4%).  

Our first step is to reduce the complexity of 
our tagger because performing inference on 
the DBN containing a conditional probability 
table of 453 elements for Memory variable is 
cumbersome. At the cost of minor deteriora-
tion in performance (3.9%, see Table 1), we 
compress the representation by clustering 
Memory values that predict similar distribu-
tion over Current tag values. The clustering 
method is based on Euclidian distance between 

452-dimensional probability vectors Pr(Ti|Ti-1). 
We perform agglomerative clustering, mini-
mizing the sparseness of clusters (by assigning 
a given point to the cluster whose farthest 
point it is closest to). As a result of clustering, 
the number of Memory values is reduced nine 
times. Consequently, the conditional probabil-
ity table of Memory and PoS become manage-
able.  

As a second step to simplification of the 
network, we eliminate feature redundancy. We 
leave only the lowercase form of each word, 
prefix and suffix in the respective vocabulary; 
remove numbers and hyphens from the vo-
cabulary, and use prefix, suffix and hyphen 
information only if the token is not in the lexi-
con. The size of the factored vocabularies for 
word, prefix and suffix is 5705, 2232 and 2420 
respectively (a reduction of 12%, 38% and 
17%). Comparing the performance of LegoTag 
with factored and unfactored features clearly 
indicates that factoring pays off (Table 1). Fac-
tored LegoTag is better on unknown words 
and at the sentence level, as well as overall. In 
addition, factoring simplifies the tagger by re-
ducing the number of feature values. 

We report four kinds of results: overall er-
ror, error on unknown words (OoV), per sen-
tence error and confusion matrices over PoS.  
Our first result (Table 2) shows the perform-
ance of our network without the variable 

Figure 1: DBN for PoS Tagging. 



Word, in order to understand whether lexical 
information is crucial to the performance of a 
tagger, and how well other features compen-
sate for its absence. 

 
Error (%) Memory 

(# values) Features 
Ave OoV Sentence 

Clustered (5) Unfactored 4.4 13.0 58.5 

Clustered (5) Factored 3.9 10.8 55.8 

Full (45) Factored 3.6 9.4 51.7 
 

Table 1: Results for Full LegoTag on WSJ. 
 
 Simply bypassing the word takes perform-

ance down to below 90%. However, it is en-
couraging that even when all words in the text 
are unknown, the features carry enough infor-
mation to tag almost 89% of the corpus. 

 
Type of LegoTag Error (%) 

H N C P S W Ave OoV Sentence 

+ + + + + - 11.3 11.3 84.0 
- - + - - + 6.1 30.6 69.0 
- - - - - + 9.3 47.6 77.7 

 
Table 2: Results of de-lexicalized and fully lexicalized 

LegoTag for WSJ corpus. 
 

Next, we test two degenerate variants: one, 
which contains only lexical information, and 
another, which contains lexical information 
plus capitalization only. Lexical information 
alone does very poorly on unknown words, 
which comes to show that the sequence is not 
enough to uncover the correct PoS. 

We now turn to the issue of using the mor-
phological cues in PoS tagging and create a 
linguistically “smart” network (Smart Lego-
Tag), whose vocabularies contain a collection 
of function words, and linguistically relevant 
prefixes and suffixes assembled from prepara-
tory materials for the English language section 
of college entrance examination (Scholastic 
Aptitude Test). The vocabularies are very 
small: 315, 100, and 72, respectively. The per-
centage of unknown words depends on vo-

cabulary size (Table 4). For the large lexicon 
of LegoTag it is less than 12%, while for the 
Smart LegoTag (whose lexicon contains only 
function words which are few but very fre-
quent), it is around 50%. In addition, two hy-
brid networks are created by crossing the 
suffix set and word lexicon of the Full Lego-
Tag and Smart LegoTag.   

The results for the Smart LegoTag, as well 
as for the Hybrid LegoTags are presented in 
Table 3. The results of Smart LegoTag indi-
cate that non-lexical information is sufficient 
to assure a stable, albeit not stellar, perform-
ance across corpora. The network was trained 
on WSJ and tested on both WSJ and Brown 
corpora with very similar results. The sentence 
accuracy is generally lower for the Brown cor-
pus than for the WSJ corpus, due to the differ-
ence in average length. The Hybrid LegoTag 
with big suffix set and small word lexicon was 
a little improvement over Smart LegoTag 
alone. Notably, however, it is better on un-
known words than Full LegoTag on the Brown 
corpus.  

The best performance across corpora was 
registered by the second Hybrid LegoTag 
(with big word lexicon and small suffix set). 
These is a very interesting result indicating 
that the non-linguistically relevant suffixes in 
the big lexicon contain a lot of idiosyncratic 
information about the WSJ corpus and are 
harmful to performance on different cor-
pora.The confusion matrix for Full LegoTag 
and Smart LegoTag are presented in Tables 4 
and 5.  

 
Error (%) LegoTag 

Ftr Size WSJ BROWN 

Word Suf-
fix Ave OoV Sentence Ave OoV Sen-

tence 

Un-
known
Words
(%)  
WSJ 

Un-
known
words 
(%) 
 
Brown

5705 2420 3.9 10 55.4 10.1 23.4 67.9 
5705 72 4.4 14 58.7 7.7 21.9 69.3 

11.6 15.4 

315 2420 6.4 10.5 70.3 10.1 17.8 76.7 
315 72 9.6 17.1 82.2 11.4 22.3 82.9 

49.2 40.8 

Table 3: Results for Smart and Hybrid LegoTags. 



The correct PoS marks the rows of the ta-
ble, while the mistakenly assigned PoS marks 
the columns. The number in each cell refers to 
the number of times the column PoS was in-
correctly assigned instead of the (correct) row 
PoS, e.g. noun was mislabeled as adjective 536 
times. 

 The column labeled “Table total” sums all er-
rors given in the table for each PoS.  The 
“TOTAL” column contains the number of errors 
LegoTag made for each PoS (including confusions 
not presented in the table). The “Contribution to 
total” is the percent of total error due to the misla-
beling of particular PoS.  
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Table 4: Confusion matrix for Full LegoTag on WSJ. 

 

 Finally, the “Per PoS error” is the percent of 
time LegoTag handles incorrectly the given PoS. 
The row labeled “Table total” sums the number of 
“false positives” for each PoS. 

The row “TOTAL” contains the number of 
false positives overall (including confusions 
not presented in the table). Shaded in gray are 
the sums over all errors in rows and columns, 
respectively.  
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Table 5: Confusion matrix for Smart LegoTag on WSJ. 

 
The confusion matrices of the Full LegoTag 

and the Smart LegoTag (Tables 4 and 5) are 
qualitatively similar. Quantitatively, the per-
cent errors are much larger for the Smart Le-
goTag, which is a corollary of the higher error 



rate overall. Since function words are part of 
the lexicon of both networks, there is no sig-
nificant change in the success rate over func-
tion words, with the exception of the 
surprising confusion between prepositions (IN) 
and past tense verbs (VBD).  The biggest 
source of error in both matrices is the 
noun/adjective (NN/JJ) pair. By and large, 
both networks accurately classify the proper 
nouns, while mislabeling adverbs as preposi-
tions and vice versa. The latter mistake is 
probably due to inconsistency within the cor-
pus (see [Ratnaparkhi’96] for discussion). One 
place where the two networks differ qualita-
tively is in their treatment of verbs. Smart Le-
goTag often mistakes bare verb forms for 
nouns. This is likely due to the fact that a 
phrase involving "to" and a following word 
can be interpreted either analogously to "to 
mom" (to + NN) or analogously to "to go" (to 
+ VB) in the absence of lexical information. 
Similar types of contexts could account for the 
overall increased number of confusions of verb 
forms with nouns with Smart LegoTag. On the 
other hand, Smart LegoTag is much better at 
separating bare verb forms (VB) from present 
tense verbs (VBP) because it does not rely on 
lexical information that is potentially confus-
ing since both forms are identical. However, it 
often fails to differentiate present verbs (VBP) 
from past tense verbs (VBD), presumably be-
cause it does not recognize frequent irregular 
forms. One way to improve Smart LegoTag is 
to put irregular verbs into the lexicon. 

4 Conclusion 

Our results show that PoS tagging without 
lexicalization is possible, although more re-
search is required to determine the relevant 
feature set. One important direction of future 
work is developing ways to induce the features 
automatically. We would like to build opti-
mized lexicons with as little handcrafting as 
possible.   

The versatility of the DBN-based tagger 
makes it adaptable to other languages. We 
would particularly like to try it on languages 
whose PoS labels are determined by different 
kinds of features, such as ones exhibiting 
richer morphological structure (see [Cucer-
zan’02]). 
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