Table 1. Kinetic parameters used to make the quantitative estimates in the text and plots in the figures.

Kinetic Rate	Symbol	Value	Reference
Unregulated promoter transcription rate	r	0.33 s ⁻¹	[99]
Repressor and activator associations rates	k_R^0, k_A^0	$0.0027 (s nM)^{-1}$	[2]
Repressor and activator dissociation rates	k_R^{off} , k_A^{off}	0.0023 s ⁻¹	[42]
mRNA decay rate	γ	0.011 s ⁻¹	[10]
Ratio between transcription rates due to activation	$f = r_1/r_2$	11	[50]
Cooperativity in repression	$\Omega_{repression}$	0.013	[50]
Cooperativity in activation	$\Omega_{activation}$	0.1	[33]
Looping J-factor	[J]	660 nM	[33]
Protein translation burst size	b	31.2 proteins/mRNA	[5]
Protein decay rate	[J]	0.00083s ⁻¹	[99]

These parameters are all measured for model systems such as the P_{lac} promoter or the P_{RM} in E. coli, and are here considered representative for promoter-transcription factor interactions.

- doi:10.1371/journal.pcbi.1001100.t001
- 2. Elf J, Li GW, Xie XS (2007) Probing transcription factor dyamics at the single molecule level in a single cell. Science 316: 1191–1194.
- 5. Cai L, Friedman N, Xie XS (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440: 358–362.
- 10. Yu J, Xiao J, Ren X, Lao K, Xie XS (2006) Probing gene expression in live cells one protein at a time. Science 311: 1600–1603.
- 33. Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, et al. (2005) Transcriptional regulation by the numbers: Applications. Curr Opin Gen Dev 15: 125–135.
- 42. Wong OK, Guthold M, Erie DA, Gelles J (2008) Interconvertible lac repressor-DNA loops revealed by single-molecule experiments. PLOS Biol 6: e232.
- 50. Dodd IB (2004) Cooperativity in long-range gene regulation by the lambda cl repressor. Genes Dev 18: 344–354.
- 99. Kennell D, Riezman H (1977) Transcription and translation initiation frequencies of the Escherichia coli lac operon. J Mol Biol 114: 1–21.