TABLE 1. Important physiological parameters for anaerobic and aerobic ammonium oxidation

Parameter	Anammox result	Nitrification ^a result	Unit
Maximum specific aerobic NH ₄ ⁺ consumption rate	0	2–5	g of NH ₄ ⁺ -N · g of protein ⁻¹ day ⁻¹
Maximum specific anaerobic NH ₄ ⁺ consumption rate	1.1	$< 0.05^{b}$	g of NH ₄ ⁺ -N · g of protein ⁻¹ day ⁻¹
Biomass yield	0.07	0.1	g of protein · g of NH ₄ +- N ⁻¹
Activation energy	70	70	$kJ \cdot mol^{-1}$
Affinity for ammonium	$\leq 10^{-4}$	$\geq 10^{-4}$	g of NH_4^+ -N · liter ⁻¹
Affinity for nitrite	$\leq 10^{-4}$	NA^c	g of NO_2^{-} -N · liter ⁻¹
Nitrite inhibition of ammonium consumption	$K_i = 0.8, \alpha = 0.8$	Usually	g of NO_2^{-} -N · liter ⁻¹
Nitrite inhibition of nitrite consumption	$\dot{K}_{i} = 1, \alpha = 0.7$	NA	g of NO_2^- -N · liter ⁻¹
Temp range	20–43	≤42°C	°C 2
pH range	6.7-8.3	Variable	
Protein content of biomass	0.6	Variable	g of protein · g total dry weight ⁻¹
Protein density	50	Variable	g of protein · g total dry weight ⁻¹ g of protein · liter biomass ⁻¹

 $[^]a$ Data were obtained as described in reference 7, except where noted. b As described in reference 8 c NA, not applicable.

^{7.} Wiesman, U. 1997. Biological nitrogen removal from wastewater. Adv. Biochem. Eng. Biotechnol. 51:113–153.

^{8.} Zart, D., and E. Bock. 1998. High rate of aerobic nitrification and denitrification by *Nitrosomonas eutropha* grown in a fermentor with complete biomass retention in the presence of gaseous NO₂ or NO. Arch. Microbiol. 169:282–286.