Table 1. Energy (NADPH or reduced ferredoxin, ATP) costs and affinity for CO_2 [reciprocal of the $K^1/_2(CO_2)$] of the 5 known autotrophic pathways of reductive CO_2 assimilation. RTCAC: reductive tricarboxylic acid cycle; PCRC: photosynthetic carbon reduction cycle; PCOC: photorespiratory carbon oxidation cycle | Pathway | NADPH/CO ₂ | ATP/CO ₂ | $K^{\scriptscriptstyle 1}\!/_{\!\! 2}\!(CO_2)\;mol\;m^{-3}$ | Source | |---|-----------------------|---------------------|---|--| | Total synthesis of acetate | 2 | 1 ^a | -40 ^b | Rusching et al. (1976), Müller (2003) | | RTCAC | 2 | 1.67 | ~1.3 ^c ,
2 ^d | Furdui & Ragsdale (2000), Kanao et al. (2002),
Lebedeva et al. (2002), Raven et al. (2008a) | | 3-hydroxy-propionate | 2 | 2 | 0.01^{e} | Hügler et al. (2003), Raven et al. (2008a) | | 3-hydroxy-propionate/
4-hydroxy-butyrate | 2 | 3 | 0.01 ^e
2 ^d | Furdui & Ragsdale (2000), Hügler et al. (2003),
Berg et al. (2007), Raven et al. (2008a) | | Dicarboxylate/
4-hydroxy-butyrate | 2 | 2.67 | 2^{d} | Furdui & Ragsdale (2000), Huber et al. (2008) | | PCRC | 2 | 3 | $0.05 - 0.3^{f}$ | Tcherkez et al. (2006), Raven et al. (2008a) | $^{^{}a}$ Assuming no ATP synthesis in the conversion of $CO_2 + H_2$ to acetate (see Müller 2003); ATP required in gluconeogenetic pathway to produce free sugars ^bBased on rate of reverse reaction of formate dehydrogenase in the CO_2 range 0 to 14 mol m⁻³. Approximately 40 mol m⁻³ is the concentration in solution in equilibrium with 100 kPa CO_2 in the gas phase at the ionic strength of cytosol at 15°C [°]For the enzyme with the lowest known affinity for CO_2 in the RTAC (Kanao et al. 2002, Lebedeva et al. 2002; the latter computed from the cited value for HCO_3 assuming a pKa1' of 6.1 at the ionic strength of the assay medium and an assumed temperature of 25°C and the assay pH of 6.5) $^{^{}d}$ The pyruvate synthase needed to convert the acetyl CoA product of the cycles into 3C compounds for biosynthesis has a K1 /₂ for CO₂ of 2 mol m⁻³ in *Clostridium* eThe carboxylases in these 2 pathways (acetyl CoA carboxylase and propionyl CoA carboxylase) have HCO_3^- as the inorganic carbon substrate; the equivalent CO_2 concentration was calculated from the pK_a and pH values at which the enzyme is thought to function in the cytosol, probably 0.7 units higher than the assay pH of 6.5. This calculation assumes that the $K\frac{1}{2}$ for HCO_3^- is independent of pH NADPH and ATP requirements assume saturation of the carboxylase function of Rubisco with CO_2 , completely suppressing the oxygenase activity. Additional ATP is used if this high intracellular CO_2 concentration is attained by a CCM rather than a very high external CO_2 with diffusive CO_2 entry. With lower intracellular CO_2 concentrations and in the presence of O_2 , additional NADP and ATP are needed for the net fixation of CO_2 to allow for the cofactors required in the synthesis of 2-phosphoglycolate with subsequent excretion of glycolate and/or operation of the PCOC or its equivalent to convert glycolate into triose