Table 2. Cellular concentrations of the common biological cations.

Ion	[Total] (mM)	[Free] (mM)	Total atoms per Cell ^a	Free atoms per cell
Na ⁺	12	8	3.6×10^{6}	2.4×10^{6}
K^+	140	120	4.2×10^{7}	3.6×10^{7}
Ca ²⁺	3	0.0001	9×10^{5}	30
Mg^{2+}	30	0.3	7.5×10^{6}	90,000

^aCalculated for a 1 μ M diameter cell; this approximates the volume of an *E. coli* cell. For a larger cell such as a lymphocyte, multiply these numbers by the ratio of the cell radius cubed ($[r_1/r_2]^3$). Thus for a lymphocyte of diameter 20 μ M, multiply the above values by ($[10/0.5]^3$) = 8000.